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Abstract 
Limitations of the Markovian chain approach for the 
calculation of diffuse intensity distributions from crystals 
undergoing the 2H to 6//transformation by non-random 
insertion of layer displacement faults are pointed out. A 
computer simulation approach for the numerical compu- 
tation of the diffuse intensity disributions in such 
situations is presented. The numerically computed 
intensity distributions along diffuse streaks, obtained by 
taking Fourier transforms of the pair correlations 
determined from simulated configuration corresponding 
to the intermediate states of transformation, show marked 
departures from those obtained analytically using the 
Markovian chain approach. Explanations for this dis- 
crepancy are advanced. 

1. Introduction 
The crystal structure of a large number of materials can 
be described in terms of stacking of layers of atoms in a 
close-packed manner (Pandey & Krishna, 1982, 1983). 
These layers can restack themselves on thermal anneal- 
ing or mechanical deformation, leading to structural 
transformations involving change of stacking sequence 
and periodicity. Such restacking transformations have 
been the subject of investigation in a large number of 
metallic (Frey & Boysen, 1981; Hitzenberger, Karnthaler 
& Korner, 1985; Ahlers & Pelegrina, 1992; Nikolin, 
Babkevich, Izdkovskaya & Petrova, 1993; Demin, 
Nekrasov & Ustinov, 1993; Cardellini & Mazzone, 
1993) and non-metallic materials (Jagodzinski, 1971; 
Krishna & Marshall, 1971a,b; Jepps & Page, 1980; 
Ogbuji, Mitchell & Heuer, 1981; Minagawa, 1978; 
Sebastian, Pandey & Krishna, 1982), and more recently 
in fullerenes (Muto, Van Tendeloo & Amelinckx, 1993). 
The restacking of layers during such transformations is 
brought about by a non-random insertion of stacking 
faults as confirmed by the appearance of characteristic 
diffuse streaks on single-crystal X-ray diffraction pat- 
terns taken from transforming crystals. From a theoretical 
analysis of the observed intensity distribution along 
streaked reciprocal-lattice rows in terms of physically 
plausible models for the statistical insertion of stacking 
faults, it is possible to determine the distribution and 
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geometrical nature of stacking faults, which are generally 
characteristic of the transformation mechanism (Pandey, 
1976; Pandey, Lele & Krishna, 1980a,b,c; Pandey & 
Lele, 1986, Pandey, Kabra & Lele, 1986; Kabra, Pandey 
& Lele, 1986). This diffraction approach for studying the 
mechanism of transformation between layer stackings 
was first developed in relation to the 2H to 6H 
transformation in SiC (Pandey et al., 1980a,b). As 
pointed out by Pandey et al. (1980a), the 2H to 6H 
transformation in SiC by a layer displacement mechan- 
ism requires occurrence of layer displacement faults at 
three-layer separations as shown below: 

Initial 2H structure: 

Resulting 6H structure: 
• ..A ; ~  A ~ A  B ~ :  A ~ . . .  

• A A B A . 

The model employed by Pandey et al. (1980a) for the 
calculation of intensity distributions along the diffuse 
streaks is based on the assumption that the faults are 
inserted sequentially into a stack of layers from one end 
of the stack, as in any Markovian chain approach. The 
sequential fault probability for the layer displacement 
faults bringing about the 2H to 6H transformation is the 
probability of occurrence of such a fault with the next 
two layers not faulted (i.e. faults maintain a minimum 
separation of three layers), as one performs a random 
walk from one end of the stack towards the other. This 
model allows faulting of one third of the layers on the 
completion of the 2H to 6H transformation when the 
sequential fault probability becomes unity. 

In real situations, the transformation can start any- 
where in the crystal rather than sequentially from one end 
of the crystal. Unlike the sequential model, the 
independently formed 6H regions in different parts of 
the crystal may grow on both sides and eventually 
impinge on the neighbouring transformed regions. This 
impingement may either lead to the merger of the two 6H 
domains or to an interface, depending on whether the 
spacing between the neighbouring layer displacement 
faults in the two domains is of three or more layers. The 
formation of interfaces due to the occurrence of layer 
displacement faults at four or five layer separations leads 
to the arrest of the transformation because of the 
requirement of a minimum separation of three layers 
between contiguous faults. Kabra, Pandey & Lele (1988) 
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employed the Monte Carlo technique using integer 
pseudo-random numbers for the insertion of layer 
displacement faults in a pre-existing stack of layers with 
2H structure. Following the original work of Pandey et 
al. (1980a), Kabra et al. (1988) also assumed that the 
layer displacement faults maintain a minimum separation 
of three layers as required for the transformation of the 
2H structure into 6H. The main finding of this work was 
that the transformation is arrested when 0.276 of the 2H 
layers get faulted, in marked contrast to the predictions of 
the sequential model which permits completion of the 
transformation when one third of the layers are faulted. 
Kabra et al. (1988) calculated the intensity distribution 
along c* for the arrested state using the sequential model, 
taking 6H as the reference state. The intensity distribu- 
tion so obtained was shown to be quite different from 
that obtained by Pandey et al. (1980c) using 2H as the 
reference state for the arrested state. Since both 
calculations were performed using the sequential model 
taking either 2H or 6H as the reference state, it was not 
possible to decide the correcmess of one over the other. 
Also, no attempt was made to verify whether the 
diffraction effects predicted on the basis of the sequential 
model will remain valid for the random space model for 
the intermediate states of transformations prior to the 
arrested state. 

In the present work, computer simulation studies on 
the 2H to 6H transformation by the insertion of layer 
displacement faults in a random space are considered 
under the assumption that the faults maintain a minimum 
separation of three layers so as to give rise to the 6H 
structure. It is shown that the numerically computed 
intensity distribution corresponding to the arrested state 
in the random space model is significantly different from 
those predicted by Pandey et al. (1980a) for the same 
equivalent sequential fault probability for the layer 
displacement faults. The numerically computed intensity 
for the arrested state is, however, found to be in 
agreement with those obtained by Kabra et al. (1988) 
taking 6H as the reference state. It is shown that, for the 
intermediate states of transformation prior to arrest, the 
discrepancy between the simulation results and those 
given by Pandey et al. (1980a) is small and is negligible 
for the very early stages of transformation. 

2. P a i r  c o r r e l a t i o n s  a n d  d i f f r a c t e d  i n t e n s i t i e s :  g e n e r a l  

c o n s i d e r a t i o n s  

For the numerical computation of diffracted intensities 
corresponding to the random space model, we have made 
use of a general formulation originally given by Wilson 
(1942) and later presented by Holloway (1969) in a more 
useful form. 

Consider a stack of N close-packed layers labelled as 
j = 0 to N - 1. Let Fj be the layer form factor for the jth 
layer. The resultant diffracted amplitude, G, from such a 

stack of layers can be written as 

G =  (1/N){F o + F l exp(-i~0) + ... + Fjexp(-ij~o) 

+ ... + FN_~ exp[-i(N - 1)~o]}, (1) 

where ~0 is the phase difference between rays diffracted 
from the origins of rhombic unit cells in the adjacent 
close-packed layers. The diffracted intensity is given by 

GG* = (1/N2)[FoF~ + F ,F  T + ... + FN_IF~¢_I] 

+ (1 /N 2) ~_~ ~ [Fj F;+ m exp(im~o) 
j m 

+ Fj+mF 7 exp(-im~0)] 
N - I  

= 1/N + ~_~ [(N - m)/N2][Jm exp(im~o) 
m=l 

+ Jm* exp(--im~o)], (2) 

where J,. = (FiFT+ m) is the average spatial correlation 
between the form factor of the jth close-packed layer and 
the complex conjugate of the form factor for the 
(j  + m)th layer. It is easy to see that J,. = (FTFj+m) = 
(FjFT+m) = J~, where * denotes a complex conjugation 
operation. Writing the real ~md imaginary parts of Jm as 

Jm = j t  ..]_/,]~, (3) 

(2) can be expressed as 

GG* = (1/N2){N + 2(N - 1)J~ cos~o + ... 

+ 2(N - m)J,~ cos m~o + . . .  

+ 2J;N_1) cost(N - 1 ) 9 ] -  2(N - 1)J~' sin ~o - ... 

- 2 ( N  - m)J~  s in  m~o - ... 

- 2J~'~_l) sin[(N - 1)9]} 
N - I  

= ( I /N)  + 2 )-'~ [(N - m)/N2][J~ cos m~o 
m=l 

- J~ sin m~0]. (4) 

If the origin is chosen on an A-type site in a close- 
packed layer, the coordinates of B- and C-type sites in the 
nth layer with respect to the 2H unit cell can be written as 
(1/3, -1 /3 ,  nz/2) and (-1/3 ,  1/3, nz/2), respectively. The 
layer form factors (relative to the atomic scattering 
factor) for A-, B- and C-type layers will thus be 

F a = l ,  

F s = exp[2rri(H - K)/3], (5) 

F c -- exp[-2rri(H - K)/3], 

where HK.L are the Miller-Bravais indices referring to 
the 2H unit cell. Assuming that the spacing between 
close-packed layers is not affected by faulting, we can 
write 

tp = zrh 3, (6) 

where h 3 is continuous variable along c*. Let w A, w B and 
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w c be the probabilities of finding A-, B- and C-type 
layers in any arbitrary region of the crystal and pa(m), 
pB(m), Pc(m) be the probabilities of the mth layer being 
in A, B and C orientations. Thus, (FjFT+m) can be written 
as 

(FjF}+,,) 

= WAPA(m)FAF,~ + wBpe(m)FsF~ + WcPc(m)FcF~ 

+ WAPB(m)FaF~ + wBpc(m)FBF~ + wcP3(m)FcF~ 

+ WAPc(m)FAF ~ -t-WBpA(m)FBF ~ -t-WcpB(m)FcF ~ 

= [WAPa(m ) + wBpB(m) + WcPc(m)] + [wApn(m) 

+ WBPc(m ) + WcPA(m)]exp[--2rri(H -- K)/3] 

+ [waPc(m) + WBpA(m) + WcPB(m)] 
x exp[Zrri(H -- K)/3]. (7) 

At this stage, it is useful to define pair correlation 
functions P(m), Q(m) and R(m) that give the probabilities 
of finding A-A, B-B, C-C; A-B, B-C, C-A and A-C, 
C-B, B-A pairs of layers with m-layer separations, 
respectively. Equation (7) thus simplifies to 

Jm = (FjFj+,,} = P(m)+Q(m) exp( - i0 )+R(m)  exp(i0), 

(8) 

where 0 = 2 z r ( H -  K)/3. It is evident from the above 
expression that reflections with H - K = 0 mod 3 will 
not be affected by faulting. Separating the real and 
imaginary parts of (8), we get 

J" = P(m) + [Q(m) + R(m)]cosO (9) 

J~ --- - [Q(m) - R(m)l sin 0. (10) 

By substituting (9) and (10) into (4), we obtain an 
intensity expression in terms of P(m), Q(m) and R(m). 
Thus, calculation of the intensity distribution from a 
faulted 2H crystal reduces to the determination of P(m), 
Q(m) and R(m). For periodic close-packed structures, 
P(m), Q(m) and R(m) have got fixed periodically varying 
values as shown in Figs. 1 and 2 for 2 / / ( A B . . . )  and 6/ /  
(ABCACB...) structures, respectively. For 2H, P(m) has 
values 1 and 0 for m = 0mod 2 and 1 mod 2, respec- 
tively. For the perfect 6H, P(m) takes values 1, 0, 1/3, 
1/3, 1/3, 0 for m = 0, 1, 2, 3, 4 and 5 mod 6, respectively. 

3. Pair correlations for the random space model 

For the simulation of the 2H to 6H transformation 
involving statistical insertion of layer displacement faults 
using the random space model, we started with a stack of 
1200 layers arranged in the AB, AB. . .  or 2 / /manner .  In 
the simulation process, the random selection of layer 
sites for faulting was made using integer pseudo-random 
numbers uniformly distributed in the interval [1, 1200]. 
Each time a layer site was selected for faulting using 
integer random numbers, the orientation of the selected 
layer was changed from A/B to C. In order to maintain a 
minimum separation of three layers between two 
contiguous layer displacement faults (a requirement for 
the 6H structure to result), two layer sites on either side 
of a faulted layer were blocked from faulting. Thus, 
before each insertion of a fault, it is necessary to check 
whether a randomly selected site can be accepted for 
faulting or not. The process of random site selection, 
faulting and blocking of two layer sites on either side of 
the fault was continued until no more faults could be 
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Fig. 1. Pair correlations, P(m) and Q(m), for the perfect 2tt structure. 
The probabilities, P(m) and Q(m), are defined only for integer m and 
the lines between the points are drawn as a guide to the eye. 
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Fig. 2. Pair correlations, P(m) and Q(m), for the perfect 6H structure. 
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inserted. It was found that transformation comes to a halt 
after the fraction of faulted layers f = 0.276. 

Using simulated configurations, we have numerically 
computed P(m), Q(m) and R(m) for the intermediate and 
the arrested states of transformation. In order to get rid of 
the boundary and statistical fluctuation effects, it was 
found sufficient to average these quantities over 1000 
configurations, i.e. 1000 repeats of the simulation with 
different random number seeds for a stack of 1200 layers. 

Fig. 3 depicts the evolution of P(m) and Q(m) for 
f = 0.083, 0.187 and 0.276, where f is the fraction of 
faulted layers. It is related to the sequential fault 
probability ot through the following expression (Kabra 
et al., 1988): 

f = o~/(l + 2a), (11) 

The most notable feature in Fig. 3 is the persistence of 
the 2H-like long-range ordering throughout the transfor- 
mation up to the point of arrest. However, the amplitudes 
of P(m) and Q(m) decrease with respect to the starting 
value for the perfect 2H as the transformation progresses. 
It is intriguing to note that although long-range 2H-like 
ordering persists, the short-range correlations do not 
correspond to any periodic structure including the 2H 
and 6H structures, as can be seen by comparing Fig. 3 
with Figs. 1 and 2. The mean 6H domain size in the 
arrested configuration is found to be around nine layers. 
Since the concept of unit cell for the average structure is 
valid if the 6H unit cell could repeat itself at least once, 
i.e. if the mean domain size is over 12 layers, an average 
domain size of around nine layers confirms the lack of 
short-range translational ordering. Thus, the arrested state 
has long-range ordering without short-range translational 
correlations (Kabra & Pandey, 1988). 

4. Diffracted intensity for the random space model 

Let Pe and Po be the values to which P(m) will converge 
beyond m = m '  for even and odd values of m, 
respectively [m' is that value of m after which there is 
no change in P(m) in Fig. 3]. Here, m' = 5, 7 and 11 for 
f =0.083,  0.187 and 0.276, respectively. Similarly, 
one can obtain Qe, Re and Qo, Ro to which Q(m) and 
R(m) will converge. Since Q(m) is found to be equal to 
R(m) beyond m', J,~ given by (10) will be zero for 
m > m'. Further, since e(m)+Q(m)+R(m) = 1, 
Qe/o = (1/2)[1 - Pc~o]. Thus, J~ in (9) for m > m' will 
be given by (for reflections with H - K = 4-1 mod 3): 

[3Pc -- 1]/2 for m even 
J~ = [3Po- 1]/2 for m odd. 

We can now split the summation over m in (4) into 
two parts. In the first part, summation over m extends up 
to m' only, whereas in the second part the summation is 
for m > m'. Thus, (4) becomes 

/ ( h3 )  = GG* 
m t 

= ( I / N )  + ~-~ [ 2 (N  - m)/N 2] 
m = l  

x [J" cos mtp - J"  sin mtp] 
N - I  

+ ~ [ 2 ( N - m ) / N 2 I J  "cosm(p. (12) 
m = n f + i  

The second summation in the above expression can be 
further split into two parts depending on whether m is 
even or odd. Taking m' as odd and N as even numbers, 
we can write m = 2p or 2p + 1 for m > m'. Thus, (12) 

1.0 

'i'!l P 

0.2!0 

LAYER DISPLACEMENT MECHANISM 

= . f=0-187 f = 0 . 2 7 6  

i i . [ 
0 0 2 4 6 '10 :50 0 2 4 6 8 1 0 ' 2 0  50 

m = m ~  m -~-~,- 

I/l/l/Illllllllllllllllllilll 

0 2 4 10 3 0  5 0  0 2 4 6 10 3 0  
1 1 1 I I 5 ,  I I 

0 2 4 6 8 10 20 50 
I'~ -----------D-- m ~ m - - - - - - ~ -  

Fig. 3. Numerically computed pair correlations, 
P(m) and Q(m), corresponding to f = 0.083, 
0.187 and 0.276 obtained by simulation. The 
abscissa scale for values of m < m' has been 
enlarged to aid in detecting the small variation 
in P(rn) and Q(m). 
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takes the form 

m ! 

l(h3) -- ( l / N )  + y][2(N - m)lN2] 
m = l  

x [J" cos m~o - J~ sin m~p] + [(3P e - 1)/2] 

( N - 2 ) / 2  

x ~ [2(N - 2p)lN21cos2p~o 
p=(m' + 1)/2 

( N  - 2 ) / 2  

+ [ (3Po-  1t/2] ~ [ 2 ( N -  2 p -  1)IN 21 
p = ( m ' +  1 ) /2  

x cos(2p + 1)~0. 

Adding and subtracting 

( m ' -  1)/2 

[ ( 3 P , -  1)/21 ~ [2(N - 2P)lNZlcos2p~o 
p=l 

(13) 

and 

[(3Po - 1)/21 
( m ' -  1)/2 

[ 2 ( N -  2 p -  1)/N2lcos(2p+ 1)(p 
p = 0  

in (13) we get 

m t 

l(h3) = ( l / N )  + }-'] [2(N - m)/N 2] 
m = l  

x [J" cos mtp - J "  sin m~o] + [(3P e - 1)/2] 

( N - 2 ) / 2  

x ~ [2(N - 2p)/N2]cos2p~ 
p = l  

(N-2)/2 
+ [(3P o - 1)/21 ~ [2(N - 2p - 1)/N 2] 

p = 0  

x cos(Zp + 1 ) t p - [ ( 3 P , -  1)/2] 

(m'- 1)/2 
x ~ [2(N - 2p)/N2]cos2p~ 

p = l  

( m ' -  1)/2 

- [ (3P o -1 ) /2 ]  ~ [2 (N-2p-1 ) /NEl  
p----0 

x cos(2p + 1)~o. 

On simplification, this reduces to 

( m ' - l ) / 2  

l(h3) = (1/N 2) JAN(1 - Pe)/2] + ~, (N - 2p) 
p=l  

x {3[Pe(2P) -- Pe] COS 2p~o- 2JE'pSin2p(p} 
( m ' -  1)/2 

+ ~ (N- -2p- - l )  
p - - ~  

x {3[Po(2 p + 1) - PolCOs(2p + 1)~- 2J~+, 

x sin(2p + l)(p} + [(sin2(N/2)~o)/sin 2 ~o] 

x [(3P e - 1) + (3P o - 1)costp]~. 
J 

(14) 

(15) 

Pe(2P), Pe, Po(2P + 1) and Po were determined by 
averaging over 1000 configurations f o r f  = 0.083, 0.187 
and 0.276, corresponding to two intermediate states of 
transformation and the arrested state. These values were 
then substituted into (15) to obtain the intensity 
distributions along c*. 

Fig. 4 shows the intensity distributions along c* for the 
two intermediate states and the arrested state. The origins 
of the second and third curves have been shifted for the 
sake of clarity. Ideally, 2H reflections appear at 
h 3 -- 0 mod 2 and 4- 1 mod 2 positions. It is evident from 
Fig. 4 that the reflections at h a = 0 mod 2 and 4- 1 mod 2, 
corresponding to the 2H positions, continue to be 
represented by sharp 8 peaks although their weights 
keep on decreasing with increasing fraction of faulted 
layers. The two summation terms in (15) give rise to 
continuous diffuse streaks along c*, which, with 
increasing fraction of faulted layers, takes the shape of 
diffuse elongated spots approximately midway between 
the 2H positions. At the point of arrest, this diffuse 
reflection shows shoulders near h a = 4- ½ mod 2 positions 
and a prominent peak near h a = 4-]mod 2 positions. 
Also, the weight of the 8 peak at h a = 0 mod 2 becomes 
vanishingly small. The disappearance of the peak at 
h 3 : 0 r o o d 2 ,  formation of shoulders near h 3 = 
+ ½ mod 2, and the diffuse peaks near h 3 : 4- 2 mod 2 
positions are the signatures of the 6H-like correlations in 
the arrested configuration. 

5. Comparison with the predictions of the sequential 
model and experimental observations 

We will now compare the numerically computed 
intensity distributions for the random space model with 
those expected on the basis of the sequential model 
developed by Pandey et al. (1980a). The continuous 
curves in Fig. 4 show the results for the sequential model 
while the dotted curves correspond to the random space 

24 
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8 2.a 
< 0.96 - -  I ..... 

~ o , ,  
z o th 

0 113 213 1 4 / 3  513 2 

t t t t t t t 
2H 6H 6H 2H/6H 6H 6H 2H 

h 3 ~-- 

Fig. 4. Intensity distributions along e* corresponding to f(o 0 
=0.083(0.1), 0.187(0.3) and 0.276(0.616) of the 2// to 6// 
transformation occurring by the layer-displacement mechanism. 
Dotted curves correspond to the random space model and continuous 
curves correspond to the sequential model. For a = 0.1 (f = 0.083), 
the two sets of curves coincide exactly. 
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model for the layer displacement mechanism. It is 
evident from Fig. 4 that the 2H reflections at h 3 - - 0 ,  
4-1 mod 2 positions continue to be represented by sharp 
peaks in both the models. The weights attached to these 8 
peaks are also in broad agreement for the two models. 
Furthermore, the development of diffuse elongated spots 
midway between the 2H reflections during the early 
stages of transformation is also common to both the 
models. However, for f = 0.276, for which the random 
space model predicts arrest, the intensity distributions for 
the two models are in considerable disagreement. The 
sequential model predicts the splitting of the diffuse 
elongated spots between the 2H reflections into pairs of 
distinct reflections approaching h 3 = 4-]mod2 and 
4-]mod2 positions of 6H. According to the random 
space model, the diffuse elongated spots do not split into 
pairs of distinct reflections. There is, of course, a 
shoulder nea r  h 3 - - - - 4 - ~ m o d 2  positions, which is the 
only signature of the development of 6H-like ordering. 

For SiC-2H crystals undergoing transformation above 
1873 K, it has been observed that: (i) the 10.L reflectitms 
with L -  0, 1 mod2 continue to remain unbroadened 
throughout the transformation although the intensity of 
the L -- 0 mod 2 reflections decreases until it merges with 
the streak; (ii) diffuse elongated spots midway between 
the L = 0 mod 2 and L = 1 mod 2 reflections appear in 
the course of transformation; and (iii) this diffuse spot 
does not split into two distinct reflections near L -- 4-], 
4-]mod2 position characteristic of the 6H structure 
(Pandey et al., 1980c). The observations (i) and (ii) are in 
agreement with the predictions of the sequential as well 
as the random space models. However, the experimen- 
tally observed arrest of the transformation, as indicated 
by the persistence of the diffuse elongated spots between 
the 2H reflections, can be rationalized in terms of the 
random space model only since the sequential model 
predicts eventual completion of the transformation. As 
mentioned in §3, the arrested state has features of a long- 
range-ordered phase without short-range translational 
correlations (Kabra & Pandey, 1988). 

6. Discussion 

The disagreement between the intensity distributions for 
the layer displacement mechanism, as predicted on the 
basis of sequential and random space models for the 
arrested state, is due to imperfect modelling of the 
situation by Pandey et al. (1980a) in terms of the 
sequential process. In the model employed by Pandey et 
al. (1980a), if a layer displacement fault occurs after a 0- 
or 1-type layer, which is preceded by another fault on the 
last but two layers, it implies continuation of the 6H 
sequence with probability a. On the other hand, non- 
occurrence of a fault (probability 1 - a )  in the above 
situation will lead to interfaces. In the random space 
model, interfaces resulting from faults occurring at four- 
and five-layer separations cannot be eliminated because 

of the minimum separation requirement between two 
neighbouring layer displacement faults. As a result, the 
arrested state contains layer displacement faults at three-, 
four- and five-layer separations, of which only the three- 
layer separation leads to the 6H structure. The interfaces 
resulting from layer displacement faults occurring at 
four- and five-layer separations are 12,1- and 12,5-type 
intrinsic faults in 6H (Pandey, 1984), which are known to 
give rise to different diffraction effects (Pandey & 
Krishna, 1976). As shown by Kabra et al. (1988), the 
fault probabilities for these two types of interface 
deduced from correct sequential modelling of the 
arrested state are o~21 =0.18  and c~25 =0.28.  In the 
sequential analogue of the arrested state in terms 
of the model considered by Pandey et al. (1980a), 
a21 = ot25 = (1 - or) = 0.38. The discrepancy between 
the predicted intensity distributions for the random space 
and sequential models cannot therefore be resolved 
unless due consideration to every distinguishable event, 
such as stacking faults occurring in the present case at 
four- and five-layer separations, is given. In fact, the 
intensity distribution calculated by considering the 
arrested state as a faulted 6H crystal with a21 = 0.18 
and a25 = 0.28 [see Fig. 5 of Kabra et al. (1988)] is in 
agreement with those predicted in the present paper on 
the basis of the random space model. It is thus evident 
that a correct sequential model for the 2H to 6H 
transformation should be based on three probabilities 
corresponding to faults occurring at three-, four- and 
five-layer separations. However, for such a model to be 
useful, the determination of the three sequential fault 
probabilities has to be done using simulated configura- 
tions. Once these probabilities have been determined 
correctly, the subsequent intensity calculation can, in 
principle, be carried out analytically. However, the utility 
of the sequential model will still remain restricted 
because of its dependence on the simulation approach 
for the determination of realistic values of the fault 
probabilities that form the most essential ingredient for 
any intensity calculation. Furthermore, this type of 
calculation will be applicable for the arrested state only 
and have restricted validity. 

7. Concluding remarks 

The sequential model, based on the Markovian chain 
approach for the calculation of diffuse intensity distribu- 
tion due to layer displacement faults, is physically 
unrealistic for crystals undergoing a 2H to 6H phase 
transformation through a non-random insertion of 
stacking faults. Since the faults bringing about such 
transformations maintain certain minimum separation so 
as to give rise to the product phase, the transformation 
gets arrested well before its completion. In such 
situations, the diffuse intensity distributions for the 
intermediate states of transformation can be conveniently 
obtained numerically using the computer simulation 
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approach outlined in this paper. The predicted diffraction 
effects based on the computer simulation approach do 
not affect the main conclusion of Pandey et al. (1980a) 
that the 2H to 6H transformation in SiC occurs by the 
layer displacement mechanism. 
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Abstract 

Two new concepts are introduced that are useful for the 
classification of grain boundaries of quasicrystals: the 
coincidence module and the coincidence quasilattice. 
Related to these concepts is the distribution of lengths in 
different directions of a quasicrystalline module, which, 
for quasicrystals whose geometry is based on quadratic 
irrational numbers, is determined by an arithmetic form 
of the type sx 2 - y 2 ,  where s is a square-free integer. 

I. Introduction 

Rotation of two identical lattices with respect to each 
other leads, for some special values of the rotation angle, 
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to coincidences of the vertices. In the case of normal 
crystals, these coincident vertices form the coincidence- 
site lattice (CSL) (Friedel, 1964; Warrington & Buffalini, 
1971; Grimmer, Bollmann & Warrington, 1974). The 
CSL is important in crystallography because it allows a 
nontrivial classification of grain boundaries and because 
small-unit-cell CSL grain boundaries seem to be 
energetically favoured (see, for instance, Sutton & 
Balluffi, 1987). 

It has been shown (Warrington, 1992, 1993a,b) that 
coincidences of the vertices appear also in quasicrystal- 
line tilings. We give here some geometrical tools needed 
for the study of coincidences in quasicrystals. We first 
introduce in a unifying perspective the projection 
schemes for quasicrystals based on quadratic irrational- 
ities, then discuss the concepts of the coincidence module 
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